考研数学李(2013年李永乐考研数学复习全书的数学一)

2024-05-09 22:19:59

广受学生信赖的“线代王”,海文考研数学辅导“黄金团队”领头人,全国硕士研究生入学考试北京地区数学阅卷组组长,真正的“线代”第一人,也被同学们亲切的称为“现代火车头”。清华大学应用数学系教授,北京高教学会数学研究会副理事长。全国最著名的考研数学线性代数辅导专家,多次参加考研数学大纲修订和全国性数学考试命题工作,并收到教育部领导的接待。李永乐老师编著多部考研数学参考书籍,在考生中享有极高的声誉,连年脱销。李老师对出题形式、考试重点了如指掌,解题思路极其灵活,辅导针对性极强,效果优良,成绩显著,受到广大学员的交口称赞。近年来,其主编的《考研数学复习全书》《线性代数辅导讲义》《数学全真模拟400题》《数学基础过关660题》《数学最后冲刺135分》已被广大考生公认的数学复习权威,深受广大学子的喜爱!

为了使考研同学能在较短时间内全面复习数学,达到硕士学习阶段应具备的数学能力,提高考研应试水平,以合格的数学成绩任国家挑选,作者根据教育部制订的《数学考试大纲》的要求和最新精神,深入研究了近年来考研命题的特点及动态,并结合作者多年来数学阅卷以及全国大部分城市“考研班”辅导的经验,编写了这本《考研数学复习全书》及其姊妹篇《考研数学全真模拟经典400题》。在编写时,作者特别注重与学生的实际相结合,注重与考研的要求相结合。

本书每章均由以下四个部分构成:

一、内容概要与重难点提示——编写该部分的目的主要使考生能明确本章的重点、难点及常考点,让考生弄清各知识点之间的相互联系,以便对本章内容有一个全局性的认识和把握。

二、考核知识要点讲解——本部分对大纲所要求的知识点进行了全面地阐述,并对考试重点、难点以及常考点进行了剖析,指出了历届考生在运用基本概念、公式、定理等知识解题时普遍存在的问题及常犯的错误,同时给出了相应的注意事项,以加深考生对基本概念、公式、定理等重点内容的理解和正确应用。

三、常考题型及其解题方法与技巧——本部分对历年统考中常见题型进行了归纳分类,归纳总结了各种题型的解题方法,注重一题多解,以期开阔考生的解题思路,使所学知识融会贯通,并能综合、灵活地解决问题。

四、题型训练及解答——本部分精选了适量的自测题,并附有详细解答。只有适量的练习才能巩固所学知识,复习数学必须做题。为了让考生更好地巩固所学知识,提高实际解题能力,作者特优化设计了与真题相仿的实战训练题编写在《考研数学全真模拟经典400题》一书中,以供考生选用。

特别需要强调的是,本书是针对报考数学1的考生而编写的,是一种新的尝试,希望对广大考生备考能有所裨益。

本书是考研应试者的良师益友,也是各类院校的学生自学数学、提高数学水平和教师进行教学辅导的一本极有价值的参考书。 第一篇 高等数学

第一章 极限、连续与求极限的方法

内容概要与重难点提示

考核知识要点讲解

一、极限的概念与性质

二、极限存在性的判别(极限存在的两个准则)

三、无穷小及其阶

四、求极限的方法

五、函数的连续性及其判断

常考题型及其解题方法与技巧

题型训练

第二章 一元函数的导数与微分概念及其计算

内容概要与重难点提示

考核知识要点讲解

一、一元函数的导数与微分

二、按定义求导数及其适用的情形

三、基本初等函数导数表,导数四则运算法则与复合函数微分法则

四、复合函数求导法的应用——由复合函数求导法则导出的微分法则

五、分段函数求导法

六、高阶导数及n阶导数的求法

七、一元函数微分学的简单应用

常考题型及其解题方法与技巧

题型训练

第三章 一元函数积分概念、计算及应用

内容概要与重难点提示

考核知识要点讲解

一、一元函数积分的概念、性质与基本定理

二、积分法则

三、各类函数的积分法

四、反常积分(广义积分)

五、积分学应用的基本方法——微元分析法

六、一元函数积分学的几何应用

七、一元函数积分学的物理应用

常考题型及其解题方法与技巧

题型训练

第四章 微分中值定理及其应用

内容概要与重难点提示

考核知识要点讲解

一、微分中值定理及其作用

二、利用导数研究函数的变化

三、一元函数的最大值与最小值问题

常考题型及其解题方法与技巧

题型训练

第五章 一元函数的泰勒公式及其应用

内容概要与重难点提示

考核知识要点讲解

一、带皮亚诺余项与拉格朗日余项的n阶泰勒公式

二、带皮亚诺余项的泰勒公式的求法

三、一元函数泰勒公式的若干应用

……

第二篇 线性代数

第三篇 概率论与数理统计

国数学家和力学家A.M.李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。对于控制系统,稳定性是需要研究的一个基本问题。在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。第一方法的影响远不及第二方法。在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。李雅普诺夫第二方法的局限性,是运用时需要有相当的经验和技巧,而且所给出的结论只是系统为稳定或不稳定的充分条件;但在用其他方法无效时,这种方法还能解决一些非线性系统的稳定性问题。发展概况从19世纪末以来,李雅普诺夫稳定性理论一直指导着关于稳定性的研究和应用。不少学者遵循李雅普诺夫所开辟的研究路线对第二方法作了一些新的发展。一方面,李雅普诺夫第二方法被推广到研究一般系统的稳定性。例如,1957年,В.И.祖博夫将李雅普诺夫方法用于研究度量空间中不变集合的稳定性。随后,J.P.拉萨尔等又对各种形式抽象系统的李雅普诺夫稳定性进行了研究。在这些研究中,系统的描述不限于微分方程或差分方程,运动平衡状态已采用不变集合表示,李雅普诺夫函数是在更一般意义下定义的。1967年,D.布肖对表征在集合与映射水平上的系统建立了李雅普诺夫第二方法。这时,李雅普诺夫函数已不在实数域上取值,而是在有序定义的半格上取值。另一方面,李雅普诺夫第二方法被用于研究大系统或多级系统的稳定性。此时,李雅普诺夫函数被推广为向量形式,称为向量李雅普诺夫函数。用这种方法可建立大系统稳定性的充分条件。系统的受扰运动和平衡状态稳定性问题的实质是考察系统由初始状态扰动引起的受扰运动能否趋近或返回到原平衡状态。用x0表示初始状态扰动,则受扰运动就是系统状态方程凧=f(x,t)在初始时刻t0时受到状态扰动x(t0)=x0后的解。其中x是n维状态向量,f(x,t)是以x和时间t为自变量的一个n维非线性向量函数。在满足一定条件时,这个状态方程有惟一解。系统的受扰运动是随时间t而变化的,而其变化又与初始扰动x0和作用时刻t0有直接的关系,数学上表示为依赖于这些量的一个向量函数,记为φ(t;x0,t0)。在以状态x的分量为坐标轴构成的状态空间中,随着时间t增加,受扰运动φ(t;x0,t0)表现为从x0点出发的一条轨线。平衡状态是系统处于相对静止时的运动状态,用xe表示,其特点是对时间的导数恒等于零,可由求解函数方程f(xe,t)=0来定出。为便于表示和分析,常把平衡点xe规定为状态空间的原点,这可通过适当的坐标变换来实现。因此李雅普诺夫第二方法可归结为研究受扰运动轨线相对于状态空间原点的稳定性。李雅普诺夫意义下的稳定性指对系统平衡状态为稳定或不稳定所规定的标准。主要涉及稳定、渐近稳定、大范围渐近稳定和不稳定。①稳定用S(ε)表示状态空间中以原点为球心以ε为半径的一个球域,S(δ)表示另一个半径为δ的球域。如果对于任意选定的每一个域S(ε),必然存在相应的一个域S(δ),其中δ<ε,使得在所考虑的整个时间区间内,从域S(δ)内任一点x0出发的受扰运动φ(t;x0,t0)的轨线都不越出域S(ε),那么称原点平衡状态xe=0是李雅普诺夫意义下稳定的。②渐近稳定如果原点平衡状态是李雅普诺夫意义下稳定的,而且在时间t趋于无穷大时受扰运动φ(t;x0,t0)收敛到平衡状态xe=0,则称系统平衡状态是渐近稳定的。从实用观点看,渐近稳定比稳定重要。在应用中,确定渐近稳定性的最大范围是十分必要的,它能决定受扰运动为渐近稳定前提下初始扰动x0的最大允许范围。③大范围渐近稳定又称全局渐近稳定,是指当状态空间中的一切非零点取为初始扰动x0时,受扰运动φ(t;x0,t0)都为渐近稳定的一种情况。在控制工程中总是希望系统具有大范围渐近稳定的特性。系统为全局渐近稳定的必要条件是它在状态空间中只有一个平衡状态。④不稳定如果存在一个选定的球域S(ε),不管把域S(δ)的半径取得多么小,在S(δ)内总存在至少一个点x0,使由这一状态出发的受扰运动轨线脱离域S(ε),则称系统原点平衡状态xe=0是不稳定的

TAGS:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;
3.作者投稿可能会经我们编辑修改或补充。

搜索
排行榜
标签列表